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Abstract

For decades, reinsurance has been one of the most important vehicles for risk management. It is
common that nowadays, some big insurance groups have it own internal reinsurer entity in order to
reduce the level of ceded profit externally in the one hand, and to benefit the diversification effect in
the other hand.

It exists two main missions for an internal reinsurer. The first one consists of the optimisation of
reinsurance program giving the specific needs of the local insurance entity. The second one consists
of a pricing model in order to challenge the external reinsurer’s prices.

The objectives of this report are in the one hand, to develop pricing models for non-proportional
reinsurance , and to assess the optimisation of reinsurance for an insurance company in the other
hand.

Regarding the first objective, the two most common non-proportional reinsurance were taken into
account in this report: Excess of loss per life and excess of loss per event Excess of loss per
event.
With regard to the excess of loss per life, the first pricing model is a frequency-severity model which
purely bases on the historical claim data and the size of portfolio. Our study was trying to introduce
the truncated distributions in the calibration to see whether we can obtain better calibration
of atypical risk than the use of usual statistic distributions can. The calibration using truncated
distribution was largely applied in P&C reinsurance, it seems to be interesting to see its application
in life reinsurance.
In case of very limited claim data, the internal reinsurer could have alternative pricing model: using
the Best Estimate incident rate risk and using the portfolio model point by Sum At Risk and by age.

With regard to the excess of loss per event, the report aims to continue the road of the past CAT
models in life insurance such as Strickler’s (1960) and Erland Ekheden’s (2008) by: extending the CAT
events database - using terrorism database (GTD), simulating claim data using Sum At Risk model
point and adding geographical deterministic scenarios in the simulation. In particular, we would like
to test the application of other "fat tail" distributions than the traditional distribution for CAT claims:
Generalized Pareto Distribution.

For the second objective, we will assume that the insurance company uses standard formula factors in
its calculation of Solvency Capital Requirement. Then based on its specific needs in terms of volatility
and required capital, we try to determine the optimized reinsurance structure.

Key words: non-proportional reinsurance, excess of loss per life, excess of loss per event, truncated
distribution, Generalized Pareto Distribution, Solvency Capital Requirement, optimisation.
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Résumé

Depuis des décennies, la réassurance est l’un des principaux outils de la gestion des risques. Il est
fréquent que de nos jours, certains grands groupes d’assurance disposent d’un réassureur interne
qui aide d’une part à réduire le profit cédé extérieurement et d’autre part à bénéficier de l’effet de
diversification.

Il existe deux missions principales pour un réassureur interne. La première consiste à optimiser
le programme de réassurance de l’entité locale en répondant à ses besoins spécifiques. La seconde
consiste à établir un modèle de tarification afin de challenger les prix du réassureur externe.

Les objectifs de ce rapport sont d’une part d’élaborer des modèles de tarification pour la réassurance
non-proportionnelle et d’autre part de proposer les indicateurs d’optimisation de la réassurance
pour une entité locale.

En ce qui concerne le premier objectif, les deux réassurances non-proportionelles les plus courants sont
considérées: excédent de sinistre par tête et excédent de sinistre par événement.
Pour la réassurance excédent de sinistre par tête, le premier modèle de tarification est un mod-
èle de fréquence-sévérité qui s’appuie sur les données historiques de sinistres. Notre étude a tenté
d’introduire les distributions tronqées dans la calibration pour voir si nous pouvons obtenir un meilleur
qualité de fit du risque atypique que l’utilisation des distributions statistiques habituelles. La cali-
bration utilisant les distributions tronquées ont été largement appliqué en réassurance on-vie. Il
semble intéressant de voir son application dans la réassurance vie.
Au cas où les données de sinistres sont très limitées, le réassureur pourrait utiliser un autre modèle
de tarification: modèle de taux d’incident Best Estimate en utilisant le modèle point du portefeuille
par Somme At Risk et l’âge.

Pour la réassurance excédent de sinistre par événement, le rapport vise à poursuivre des modèles de
tarification du risque CAT en vie tels que Strickler (1960) et Erland Ekheden (2008) en élargissant
la base de données CAT en utilisant la base pour les événements terrorists - GTD; en simulant
les montants de sinistre à l’aide du modèle point par Sum At Risk et en ajoutant des scénarios
déterministes. En particulier, nous aimerions tester l’application d’autres distributions de la "queue
épaisse" que la distribution traditionnelle pour la caribration du risque CAT - distribution Pareto
généralisée.

En ce qui concerne le deuxième objectif, nous supposerons que la compagnie d’assurance utilise les
formules standards dans son calcul du capital de solvabilité requis . En suite, en fonction de ses besoins
spécifiques en termes de volatilité ou de capital requis, nous tentons de déterminer la structure de
réassurance optimisée.

Mots clés: réassurance non proportionnelle, excédent de sinistre par tête, excédent de sinistre par événe-
ment, distribution tronquée, Pareto distribution généralisée, capital requis, réassurance optimisée.
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Chapter 1

Introduction to life reinsurance

1.1 Brief definition of life reinsurance

1.1.1 Definition

Reinsurance can be defined as a coverage purchased by an insurer to cover all or a part of risks
from insurance policies issued by this company. This buying action is called a "cession", the insur-
ance company is called "ceding company". The Reinsurer can then also cede the risk or a part of
it to other Reinsurers. This action is called "retrocession" and the other Reinsurers are known as
"retrocessionaires".

Figure 1.1: Risk retrocession

1.1.2 Covered risks

One or more categories of risks can be covered by a reinsurance contract. In particular, for life
insurance business:

• Mortality and morbidity

• Disability

• Medical expense

• Critical illness

• Longevity

• Others
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In a reinsurance treaty, we have often a list of exclusion. For example: participating in a criminal
act, suicide or self-inflicted injury, etc. In general, they are risks that are difficult to handle by the
reinsurer.
In addition, the "High Risk Occupation" (HRO) and the "High Risk Business" (HRB) are submitted
as "Special Acceptances". The reinsurer could either decline or accept the risk with or without extra-
loading.
High Risk Business: Individual Policies of the kinds particularized in the reinsurance treaty. For
example: Short-term travel accident policies.
High Risk Occupation: The occupations of Original Insured considered to be of greater risk such
as: Professional sport-players, cabin crew and pilots of the airline companies, workers in mineral
activities.

1.1.3 Contractual elements

The contractual elements between the players mentioned in previous section are written in a legal
agreement called: Reinsurance treaty. One can find following important technical notions in a life
reinsurance treaty:

Reinsurer expense: a sum calculated as a percentage of the Reinsurance Premium. It represents
the expenses issued from Reinsurer’s activities linked to the covered treaty.

Premium commission: The commission payable by Reinsurer to Reinsured for its administra-
tive activities of original insurance policies.

Profit sharing commission: The amount of profit from Reinsurer to be shared with Reinsured
if the treaty makes profit for the Reinsurer.

Minimum Deposit Premium: The first and fixed amount payable by Reinsured to Reinsurer
as premium. The remaining amount will be calculated in function of claims amount during the year.

Sum at risk: under a Policy or for a given period of insurance, the difference between:the insured
benefit or the present value of the benefits payable in the event of a Claim and the corresponding
technical reserve, if any, at the date of the Claim. From now on, this term will be noted as "SAR".

Deductible: in respect of any Claim, the amount of Ultimate Net Loss retained by the Reinsured
for its own account.

Limit: the maximum amount covered by the Reinsurance Agreement in respect of each Covered
Loss, in excess of the Deductible.
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Annual Aggregate Limit: the maximum amount covered by the Reinsurance Agreement in one
covered year.

Special Acceptances: agreement by the Reinsurer to include risks as Covered risks where, un-
less specifically agreed, Acceptances such risks would ordinarily not be accepted or would be excluded
from cover or, if covered, would be subject to limitations.

Claim bordereau: The file sent by reinsured containing historical claim triggering the reinsur-
ance treaty.

Premium bordereau: The file containing all information about reinsurance premium, especially
using for reinsurance per insured life.

1.2 Traditional life reinsurance and structured life reinsurance

We distinguish two main kinds of life reinsurance which are traditional reinsurance and struc-
tured reinsurance. Traditional reinsurance can be defined as a vehicle of transfer of risks for
example: mortality, morbidity, disability and medical expense. The current thesis will only focus on
the traditional reinsurance.
It’s also interesting to notice that in the more recent period, structured reinsurance by definition,
is used as important tools for insurers to achieve some objectives, for example: to optimize the
diversification of risks, to reduce the taxes, volume of reserve or cost of capital etc. When structured
reinsurance involves risk transfer, the risk transfer purpose is only secondary.

1.3 Focus on traditional life reinsurance

1.3.1 Different types of traditional life reinsurance

There are two main kinds of traditional reinsurance: proportional and non-proportional.
In proportional basis, the reinsurance premium is indicated proportionally to the insurance premium
or to the ceded sum at risk of each insured. In contrast, in non-proportional basis, the reinsurance
premium is indicated globally for the total ceded portfolio.
Technical notions: If the insurance portfolio contains n policies with the corresponding sum at risks
Xi,i=1,..,n and the corresponding insurance premiums: Pi,i=1,..,n.
The reinsurance premium is noted as P re. If the reinsurance premiums are given per life, we note
P rei,i=1,..,n

9



1.3.1.1 Proportional reinsurance

The main types of proportional reinsurance in the market are: quota-share and surplus.
a) Quota-share - QS
Reinsurer and insurer share the premium and the amount of claim in quota basis. The quota-share
ratio, i.e. "cession rate" is noted q, then 1 -q would be called "retention rate". We have reinsurance
premium:

P re = q.
n∑
i=1

Pi

If there is a claim occurred for policy j, then, the amount of claim paid by Reinsurer called "claim
recovery" is equal to:

Cj = q.Xj and C =
∑
j

Cj

where C is total amount of claims during the covered period In the treaty wording, there would be
a clause which limits the amount of sum at risk accepted by Reinsurer. This limit is often called
"Underwriting limit". Above this level, the policies could be classed as "Special acceptances".
The following graph shows an example of quota-share reinsurance with the ceded quota-share ratio
being equal to 25%.

Figure 1.2: Quota-share reinsurance

The treaty could introduce a clause of profit sharing commission. Thus, the reinsurance result is the
combination of reinsurance premium and claim, expense and commission, and profit sharing, i.e:
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Reins.re = Pre(1−RC)− C − PS.(Pre(1−RC − α)− C)

Where :

• Preins.re: Reinsurance result

• RC : Reinsurance premium commission

• C: Claims amount

• PS: Profit sharing ratio

• α: Reinsurer expense

b) Surplus per life - XP
The Surplus treaty is another form of proportional reinsurance but in practice, it introduces following
notions as in non-proportional treaty:

• R: Retention

• L: Limit

The treaty Surplus is noted in this case: L XP R.
The retention and limit are applied in per head or per policy level. A sum at risk Xi is assigned to
each insured or each policy. From the following calculation, the treaty defines the cession rate r for
each insured or each policy:

r = min
( L
Xi
,max(1− R

Xi
, 0)
)

For mortality coverage with lump-sum payment in case of claim, the amount of claim is generally
fixed by the sum at risk Xi and the treaty reimbursement mechanism works exactly as XL per Life
non-proportional treaty: reinsurer engages to pay any amount of claim exceeding the retention and
limited to the limit of the treaty, i.e. shown by following formulas:

Xre
i = min(L,max(Xi −R, 0))

However, for disability coverage, the amount of claim sometimes depends on the level of disability and
therefore isn’t fixed at the sum at risk level. The cession rate is used in this case:

Xre
i = Xi ∗ r

The graph below shows the part of Reinsurer and insurer in sum at risk for a Surplus reinsurance 5m
XP 1m with mortality coverage:
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Figure 1.3: Surplus reinsurance

As precised from the start, the reinsurance premium is calculated in proportional basis, per policy by
2 kinds of basis:

• Quota-share basis:

Pre(i) = Xre
i

Xi
.Pi

Reinsurance premium is proportional to the original premium.

• Risk premium basis:
Pre(i) = Xre

i .qxi

Reinsurer gives the specific rates applied to the ceded sum at risk which are generally different
from insurance premium rate.

In practice, risk premium basis is more frequently used than quota-share basis. The reinsurance
premium rate could be percentage of a reference table (e.g. regulation’s mortality table) or it could
be a proper premium table calibrated by Reinsurer.
An example of reinsurance premium table for policies with death benefit:
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The rate could be different for male and female insured, smoking and non smoking insured.
The reinsurance result is calculated in the same manner as for quota-share reinsurance:

Reins.re = Pre(1−RC)− C − PS.(Pre(1−RC − α)− C)

b) Surplus combined quota-share per life
It exists also a mixed form between surplus and quota-share. Under the surplus retention, insurer and
Reinsurer shares the risk in a proportional basis, i.e. in a quota-share basis.
Example: Surplus with retention 250,000 combined with a quota-share 75% : 25%. The Reinsured
retains 75% under the retention.

If we note 1 − α the cession rate below the surplus retention then the following formula shows the

13



calculation of the reinsured sum at risk: Reinsured sum at risk:

Xre
i = min(L,max(Xi −R, 0)) +min(Xi, R) ∗ (1− α)

Insurer’s retained sum at risk: Xi −Xre
i

The reinsurance premium is normally defined in a risk premium basis (qx applied in ceded sum at
risk).
The reinsurance result is calculated in the same manner as for proportionally surplus treaty.

1.3.1.2 Non-proportional reinsurance

Unlike proportional treaties, the reinsurance premium for non-proportional treaties normally doesn’t
base on a per life basis. The premium is calculated in the portfolio level.
In general, it exists 3 popular kinds of non-proportional forms: Excess of Loss (noted as "XL") per
Life, XL per event (CAT) and Stop-loss. In the scope of this document, we will focus only on XL per
Life and XL CAT treaties for the pricing and the optimization of reinsurance.

a) XL per life
Reinsurer engages to pay any amount of claim exceeding the retention and limited to the limit of the
treaty, i.e. shown by following formulas:
Reinsured sum at risk:

Xre
i = min(L,max(Xi −R, 0))

Insured sum at risk:

Xi = min(L,max(Xi −R, 0))

Example: 5m XL 1m

Figure 1.4: XL per Life reinsurance
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In addition, it’s common for non-proportional treaties to have an AAL clause (aggregate annual loss)
per year which is not likely to be included in proportional basis.

C = min(
∑
j

Cj , AAL)

Covered period:
The covered period of XL per life treaty is normally one year (yearly renewable). This treaty covers
all claims exceeding the retention of the treaty incurred during the covered period. The claim could
be reported after the covered period (IBNyR - Chapter 2 - 2.1.1), or not enough reported during the
covered period (IBNeR - Chapter 2 - 2.1.1)
Treaty conditions:

• R - Retention (deductible): The retention of the treaty. The claim amount has to exceed this
level in order to activate the treaty.

• L - Limit (Capacity): The maximum obligation of Reinsurer per claim.

• n - Number of reinstatement: The maximum number of amounts of limit could be payable by
reinsurer per year after the first used limit.

• AAL - Annual Aggregate Limit - The maximum total amount of reinsured claim payable by
Reinsurer per year: AAL = (n+1).L

Reinsurance premium: The reinsurance premium isn’t calculated by a proportional basis per
insured life. The reinsurance premium is given in form of rate of a premium basis. The premium
basis could be EPI (Earned Premium Income) or ceded SAR. As the cover lasts during 1 year period,
the rate is normally fixed at the beginning of the contract and re-adjusted at the end of the contract
in function of the evolution of the premium basis. For example, if the premium basis stated in the
treaty is EPI, then at the time that the reinsurance treaty is issued (begining of year n), the Reinsurer
pays normally an amount called "Minimum Deposit Premium" (MDP).

MDP = q.EPI01/01/n

At the end of the year, the Reinsurer and insurer readjust the reinsurance premium as following:

Pre = min(MDP, q.
EPI01/01/n + EPI31/12/n

2 )

In general, the governance of reinsurance premium of XL per life treaty is much more simple than sur-
plus reinsurance treaty as required no calculation per head. It’s often used when there is limited data
in per life basis (in some countries, insurer can not obtain all per life information in group business).

b) XL per event
The XL per event treaty (or also called in other words "CAT treaty") is placed by insurer after almost all
other reinsurances such as per life and quota-share reinsurance in order to protect the portfolio against
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extreme losses caused by natural catastrophic events or man-made catastrophic events (industrial
hazard, terrorism attacks, etc.).
Covered period:
As XL per life treaty, XL per event treaty has also normally one year covered period (yearly renewable).
This treaty covers also all claims exceeding the retention of the treaty incurred during the covered
period.
Treaty conditions:

• R - Retention (deductible): The retention of the treaty. The claim amount per event has to
exceed this level in order to activate the treaty.

• L - Limit (Capacity): The maximum obligation of Reinsurer per event.

• n - Number of reinstatement: The maximum number of amounts of limit could be payable by
reinsurer per year after the first used limit.

• AAL - Annual Aggregate Limit - The maximum total amount of reinsured claim payable by
Reinsurer per year: AAL = (n+1).L

• Minimum number of victims: M - The minimum number of victims in the event in order to
activate the treaty.

c) XL Stop loss
As CAT treaty, Stop-loss is also a reinsurance after the placement of per life reinsurances.
Stop-loss reinsurance will help to protect company result against the bad annual loss ratio due to
either number or size of claims.
As already mentioned, a CAT cover will help the company be protected against a big catastrophic
event. However, the CAT cover generally excludes the risk of epidemic and pandemic. The stop-loss
cover, in complement to the CAT cover, can cover this risk and then can protect the final result of the
insurance company. Stop-loss reinsuance, therefore, not only protect the insurer against large claims
but also large number of small claims during the year.

Example: Stop-loss reinsurance with retention 80% and capacity 120%. If the annual claims ratio
(total claim/ total premium) exceeds 80%, the treaty will pay the exceeding part limited by the
capacity 120%.
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Figure 1.5: Stop-loss reinsurance

1.3.2 Data available to Reinsurer

1.3.2.1 Portfolio data

The most expected data from Reinsurer side is in a per life basis, i.e:

This detailed information will help the Reinsurer project per life cash-flows scenario for future period.
However, there are several constraints in terms of availability of data for a Reinsurer:

• The insurer provides only information about insureds protected by reinsurance. Therefore, it
exists a basic risk: biased evaluation of risk for Reinsured portfolio. Indeed, the Reinsured
portfolio doesn’t take the same level of risk as the whole insured portfolio does.

• Per life information is not available for group business in some countries due to regulatory
constraints.

• Per life information is not possible to obtain, only per policy information is, due to lack of
insured ID in a non automatic underwriting process (happening more for old policies).

• The quality of data is not always as good as expected. Sometimes, the quality of data is very
poor and Reinsurer has to make a lot of assumptions in its analysis.

a) Proportional reinsurance
In proportional reinsurance, insurer has to establish premium bordereau and claim bordereau for each
policy. Therefore, Reinsurer has more chance to obtain in this case data per policy as needed above
or even better, it can obtain also the accumulation per life information, i.e, the insured ID.
b) Non proportional reinsurance
In per life basis, as described in the section above, non proportional reinsurance is in general an
agreement to solve the problem of per head data. The premium is paid in total of portfolio and not
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per life. The information per life is not provided in detail but at some level, a model point is provided
as in the following example:

XL per Life:
Example: A mortality portfolio (only mortality risk is covered) is ceded by a XL per life treaty
5,000,000 XL 1,000,000. The maximum SAR in this portfolio is 6,000,000 EUR. The table below
shows the number of insureds, the average age per range of SAR:

Figure 1.6: Model point

Based on this table, the Reinsurer could have a brief view on the portfolio without going into detail
of each insured life.

XL per event (XL CAT):
For example, if the life portfolio is reinsured firstly by a XL per life and then in a second state by a
CAT treaty, then the CAT treaty will cover the total SAR retained by insurer after the XL per life
treaty.
By consequence:

• The SAR covered by CAT treaty: EUR 31,693,000,000

• The number of heads covered by CAT treaty: 87,193

• The average SAR per head covered by CAT treaty: EUR 363,481. Note that before the XL per
Life treaty, the average SAR per head is higher: EUR 404,422

In practice, it’s more important to have the information splitted by line of business, between group and
individual policies since the catastrophic risk is much higher for group policies with high concentration.
In this example:
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The risks covered by a reinsurance treaty should be relevant to the risks covered in the original policies
(insurance policies), i.e., the CAT treaty shouldn’t cover the risks which are not covered by the original
policies. Therefore, the risks covered by insurance policies are provided as well.
In this example:

Figure 1.7: Exclusion XL per event (CAT treaty)

In practice, the original policies always covers natural catastrophe risk and epidemic or pandemic risk.
However, the epidemic and pandemic are not in the scope of this document. Also, the original policies
may cover or not terrorism risk (bomb attacks, ambushes, etc), NBC (Nuclear, Biological, Chemical)
and NBC terrorism risk. Political instability causes are normally covered except passive participation
in war. High Risk Occupation is by default excluded in the reinsurance treaty. If Insurer wants to
cover a group of high risk occupations (pilots, sport men, etc.), it has to request Reinsurer to put the
group in a Special Acceptance.

1.3.2.2 Public catastrophes data

Natural CAT and man-made CAT except terrorism:
For CAT treaties, in most cases, Reinsurer doesn’t possess enough claim data in its underlying portfo-
lio. For the risk assessment, it has to use the data coming from general population in order to do the
calibration. A transformation step will be done in order to deduce the risk on the reinsured portfolio.
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One of the most popular source of CAT data is EMDAT database (http://emdat.be/). An example
of available information can be shown in the following table:

Figure 1.8: EMDAT database extraction

In order to understand better the database, we did some following descriptive statistics of the database.
The using period is: 1900-2014.

Worst events in terms of number of deaths from 1970:

Statistics by type of disaster:

• Severity: 1900-2014
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• Frequency: 1970-2014

Statistics of frequency by region:

Looking at the statistics with two different lengths of time, we can conclude that there are more and
more catastrophes.

It should be noticed that there are some catastrophic events that touch multiple countries. For
example: the earthquake-tsunami in 2004 impacted Indonesia (165,000 deaths), India (16,389 deaths),
Sri-Lanka (35,399 deaths).

CAT Terrorism:

• GTD (« Global Terrorism Database ») : http://www.start.umd.edu/gtd/, 3 main variables can
be found from this database:

– year of occurrence
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– country name

– number of deaths

Figure 1.9: GTD database extration

1.3.3 The role of traditional reinsurance for a life insurer

Reinsurance plays very important roles in insurance activities and risk management:

• Protect the insurer against the occurrence of extreme events or the accumulation of many normal
events.

• Reduce the volatility of insurance portfolio.

• Increase the underwriting capacity of insurer. Reinsurance can help insurers underwrite the risk
requiring an amount of solvency capital greater than their own.

• Play the role as consulting. Reinsurer has sometimes more experiences and data in the market
due to the fact that they work with many insurers at the same time. Reinsurer can therefore
provide some services to insurer such as: launching new product, pricing, medical underwriting,
etc.

1.4 Reinsurance in Solvency II context

1.4.1 Reinsurance in calculation of solvency capital requirement

1.4.1.1 Reinsurance under Solvency I

Solvency Margin and relief through reinsurance in Solvency I framework are measured very easily
based on factors on volumes and limited by arbitrary factors:

Solvency Margin = 4% of statutory reserves+ 0.3% of Sum At Risk

Capital relief through reinsurance as % of the Solvency Margin:

Min(reinsured reserves/ total reserves, 15%) +Min(Reinsured SAR/Sum At Risk, 50%)
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1.4.1.2 Reinsurance under Solvency II

Under Solvency II, reinsurance has double effects which generally increase the SII Solvency Ratio:
BOF
SCR

• Reduction of Risk Margin leads to the increase of Basic Own Funds

• Reduction of SCR

Figure 1.10: Impact of reinsurance under Solvency II
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Chapter 2

Non-proportional reinsurance pricing
models

In this thesis, we aim to propose the reinsured risk-costing models for non-proportional reinsurance.
"Risk-costing" means that we do not set any margin above three traditional components of the price:
pure premium, cost of capital and expense. We apply the proposed models in an example of reinsurance
program containing:

• XL per life treaty for per life level.

• XL per event (XL CAT) for the part retained net of the XL per life treaty.

The taken example uses an insurance portfolio based in France. The currency is EUR. The structures
of the reinsurance treaties are:

• XL per life: EUR 5M XL 1M. The number of reinstatement: 15.

• XL CAT: EUR 100M XL 10M. The number of reinstatement: 1. The minimum number of
victims to trigger the treaty: 5.

The information for each kind of treaty is given as following:

XL per life: The treaty is priced for the 2017 coverage.
List of data available and assumptions:

• 2010-2016 historical claims data above the retention of XL per life treaty including the develop-
ment of claims
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Figure 2.1: XL per life - List of claims higher than retention

Note that the amounts didn’t take into account inflation rate. They are reported amounts.

• 2010-2016 historical total ceded sum at risk

• 2010-2016 historical earned reinsurance premium

• Model point as in example in chapter 1

• Assuming that there is no special acceptance

• Assuming that there was no change in structure over past years
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XL per event (CAT treaty): The treaty is priced for the 2017 coverage.
List of data available:

• Total sum at risk and number of heads

• Sum at risk by range

• Model point in example in chapter 1

• Assuming that there is no special acceptance

• Concentration site information with the most concentrated groups in the portfolio.

2.1 XL per life

2.1.1 Some important definitions

IBNyR and IBNeR

• IBNyR: Incurred But Not yet Reported. This term mentions claims happened during the covered
period of underlying treaty but not yet reported at the end of this period. For example, at the
end of year N, there are 10 reported claims happened during year N. In the year N + 1,there are
2 claims happened during year N are reported. At the end of year N, these 2 claims are viewed
as IBNyR.

• IBNeR: Incurred But Note enough Reported. This term signifies the part of claim that is not
reported yet. For example at the end of year N, the claim is reported with the amount of 100.
The ultimate amount of this claim is 150 so that at the time the amount of 100 is reported,
IBNeR for this claim is 50.

Occurrence year: The year when the claim occurs.
Declaration year: The year when the claim is declared.
Underwriting year: The year in which the portfolio is covered by the treaty, i.e. the treaty is
underwritten. For Excess of loss reinsurance, when we take all claims in the underwriting year N, it
means that all claims having occurrence year N.
Accounting year: When we take all claims by accounting year M, it means that all claims having
declaration year M.
Ultimate claim: The final total amount of claim when it’s concluded as not having anymore IBNR.
We can mention about the ultimate amount of one claim or the ultimate amount of claims per occur-
rence year.
Notion:

• Xk,j,i is the amount of claim k incurred in year i, reported in year j (j ≥ i). As we take into
account historical claims in 2010-2016, k and j takes value from N − 7 to N − 1 where N is next
underwriting year, i.e. 2017.
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• EPIk is the earned premium income of year k in the insurance portfolio which is used as an
indicator for the basis of the volume of portfolio.

• ak is inflation rate of year k which is used as an indicator for the valuation of amounts in year k.

2.1.2 Pricing model

2.1.2.1 Grand principle

The premium for the XL per life treaty underwritten in year N is the combination of:

• Expected claim amount The expected claim amount in year N could be estimated by different
methods:

– Frequency - severity

– Burning Cost

– Incident rates

– Combined method

In the following sections, we will go through each method and discuss their advantage and
limitation.

• Cost of capital or variance: When reinsurer underwrites a treaty, it takes risks. Therefore,
an amount of solvency capital is required. Though the solvency required capital is normally
calculated in the portfolio level, an amount allocated per treaty should be taken into the price.
The calculation of cost of capital per treaty will be described in chapter 3.

• Expenses: Once the treaty is signed, reinsurer has to spend fees on administration, acquisition,
claim management, etc. The expense is often taken as fixed percentage of the commercial
premium for all treaties. In this thesis, we consider the expenses rate used in pricing is 10%.

2.1.2.2 Frequency-severity approach

We call the claims triggering XL per life retention or around the retention "atypical claims".
Principle: The frequency of and severity of atypical claims incurred in year N are calibrated and
then simulated in 500K scenarios. The expected value of claim amount is taken as the average amount
of 500K scenarios.
We have:

S =
N∑
i=1

Xre
i

Where:

• S is the annual reinsured claim amount

• N is the annual number of claims
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• Xre
i is reinsured amount of claim i

The price of XL per Life treaty is a composition of the expected value, the cost of risk which represents
the volatility of result undertaken by Reinsurer or the cost of require capital and the expense issued
by the management of the reinsurance treaty.

P = E(S) + Cost.of.risk

1− expense

The calibration of severity is done by 2 fitting methods: MLE (Maximum Likelihood Estimation) and
MME (Method of Moment Estimation).

Maximum Likelihood Estimation (MLE)
Suppose there is a sample x1 ... xn of n independent and identically distributed (i.i.d) observations,
coming from a distribution with an unknown probability density function f(.). It is assumed that the
function f belongs to a certain family of distributions {f(.|θ), θ ∈ Θ}, called the parametric model, so
that f = f(.|θ0). Θ is the definition interval of the function’s parameters. The value θ0 is unknown
and is referred to as the "true value" of the parameter. It is desirable to find an estimator which would
be as close as possible to the true value θ0.
To use the method of maximum likelihood, one first specifies the joint density function for all obser-
vations. For an iid sample, this joint density function is:

f(x1, x2, ..., xn|θ) = f(x1|θ).f(x2|θ)...f(xn|θ)

The observed values x1, x2, ..., xn are fixed realizations of this function, whereas θ will be the function’s
parameters and allowed to vary freely; this function will be called the likelihood:

L(θ|x1, x2, ..., xn) = f(x1, x2, ..., xn) =
n∏
i=1

f(xi|θ)

The log likelihood function is more often used in practice:

LL(θ|x) = ln(L(θ|x1, x2, ..., xn)) =
n∑
i=1

ln(f(xi|θ))

The method of maximum likelihood estimates θ0 by finding a value of θ that maximizes LL(θ|x). This
method of estimation defines a maximum-likelihood estimator (MLE) of θ0:

θ̂mle ⊆ {argmax
θ∈Θ
LL(θ|x)}

Method of Moment Estimation (MME)
The method of moments is a method of estimation of population parameters such as the mean,
variance, median, etc., by equating sample moments with unobservable population moments and then
solving those equations for the quantities to be estimated.
Let (x1, x2, ..., xn) be an iid sample of the random variable X which is assumed to have a density where
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is a vector parameter:
Empirical mean of X is given by:

X̄ = 1
n

n∑
i=1

Xi

Empirical variance of X, the unbiased estimator of the variance, is given by:

S2
X = 1

n− 1

n∑
i=1

(Xi − X̄)2

Empirical standard deviation of X = SX

Empirical distribution function of X = F̂X which is defined by :

∀x ∈ R, F̂X(x) = 1
n
Card{i ∈

[
1;n

]
/Xi < x}

Empirical α-quantile of X is defined by:

∀α ∈]0; 1], ˆF−1
X (α) = Inf{x ∈ Supp(X)/F̂X(x) ≥ α}

Criteria to choose the best fitting quality distribution

• Akaike Information Criterion (AIC)

AIC = 2k − ln(L)

Where:

– k denotes the number of parameters of the statistical model

– L denotes the maximized value of the likelihood function

• Kolmogorov Smirnov criterion (KS)

The KS statistic quantifies a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution.

Dn = supx|Fn(x)− F (x)|

• Cramer-von Mise

Let x1, x2, ...xn be the observed values in increasing order. The Cramer-von Mises criterion uses
the fact, that if is the underlying random variable X with the continuous distribution function
F (X), then F (X) follows the uniform distribution U(0, 1). Cramer-von Mise statistic:

T = 1
12n +

n∑
i=1

[2i− 1
2n − F (xi)

]
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• Anderson-Darling

The Anderson-Darling statistic:

AD = n

∫ ∞
−∞

[
Fn(x)− F (x)

]2
[F (x)(1− F (x)]dF (x)

(a) Frequency:
Frequency of atypical claims could be modelled by discrete distributions such as: Poisson, Binomial
or Negative Binomial distributions. Each of them has different states of relationship between mean
and variance, i.e:

• Negative Binomial: Mean ≤ Variance

• Poisson: Mean > Variance

The reason why we won’t use Binomial distribution is that it will simulate the number of claims
limited to a parameter n, which is not realistic.

Poisson distribution
N is a Poisson random variable if it takes non-negative integer value: 0,1,2,... and its probability
function is as following:

P (N = k) = λke−λ

k!
Mean and variance:

E(N) = V ar(N) = λ

The parameter λ can be easily estimated by the empirical mean of the given sample.

Negative binomial distribution
We consider a sequence of independent trials with each following a Bernoulli distribution with proba-
bility of success p in each trial. We are observing the sequence until there are r times of failure. The
number of success we have seen, K, will have Negative Binomial distribution. It takes non-negative
integer value and its probability function is as following:

f(k, r, p) = P (K = k) = Ckk+r−1.p
k.(1− p)r

Mean and variance:
E(K) = rp

1− p = µ

V ar(K) = rp

(1− p)2 = σ2

By consequence, the parameters r and p are estimated easily by Method of Moment, i.e, with empirical
mean and variance of the given sample:

p = σ2 − µ
σ2
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r = µ2

σ2 − µ

Consider that r →∞, denote mean of K as λ then

λ = rp

1− p ⇒ p = λ

r + λ

Hence, the probability mass function will be:

f(k; r, p) = Γ(k + r)
k!.Γ(r) .p

k.(1− p)r = λk

k! .
Γ(r + k)

Γ(r).(r + λ)k. 1
(1+λ

r
)r

If we consider r →∞ then Γ(r+k)
Γ(r).(r+λ)k → 1 and 1

(1+λ
r

)r →
1
eλ

and finally,

lim
r→∞

f(k, r, p) = λke−λ

k!

which is the probability mass function of Poisson distribution.
In other words:

Poisson(λ) = lim
r→∞

NB(r, λ

λ+ r
)

The Negative Binomial distribution allows to take into account the over-dispersion problem (variance
is higher than mean) which can not be shown in Poisson distribution (where variance is equal to mean).

Binomial distribution
When variance is observed to be smaller than mean, one can use the Binomial distribution. K is the
number of successes in a sequence of n independent trials where each has the probability of success p.
We note K follows a binomial distribution with parameters n ∈ N and p ∈ [0, 1], i.e, K ∼ B(n, p).
The probability mass function of K is as following:

P (K = k) = Ckn p
k(1− p)n−k

Mean and variance:
E(K) = n.p

V ar(K) = n.p.(1− p)

Similar to the 2 frequency distributions above, the parameters of Binomial distribution can be easily
estimated by the empirical mean and variance of the given sample.
The following histograms show the difference in variance of those distributions. The negative binomial
distribution gives larger dispersion than the Poisson distribution does and the binomial distribution
gives the lowest dispersion.
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(b) Severity:
As claim amounts in XL per life reinsurance are above the retention, they are considered as "atypical"
claims, i.e. high amounts of claims. The normal distribution with generally "short tail" is not appro-
priated for this kind of claim amounts. The distributions with "intermediate" or "long" tails are more
relevant.
We will study in this stage two different fitting approaches:

• Traditional approach where we use usual distribution to fit the severity

• Second approach where we test the "truncated" distributions to see whether they are more
adapted than usual distribution.

b.1. Traditional approach: usual distributions
Following usual distributions are tested:

• Log normal

• Gamma

• Weibull

• Pareto

• GPD (Generalized Pareto Distribution)
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Log normal distribution
X follows log-normal distribution with two parameter µ and σ that are respectively mean and standard
deviation of X if and only if:

X = eµ+σ.Z

where Z is standard normal random variable.
Apparently, X has positive values.
Probability density function:

f
(
x, µ, σ

)
= 1
xσ
√

2π
exp

[
− (lnx− µ)2

2σ2
]

The mean and variance of a random variable following a Log-normal distribution: Mean and variance:

E(X) = eµ+σ2
2

V ar(X) = e2µ+σ2(eσ2 − 1)

MLE

LL(µ, σ|x) = ln(L(µ, σ|x1, x2, ..., xn)) =
n∑
i=1

ln(f(xi|µ, σ)) = −
∑
i

(lnxiσ
√

2π)−
∑
i

(lnxi − µ)2

2σ2

The MLE parameters optimizing this function are:

µ̂ =
∑n
i lnxi
n

σ̂ =
n∑
i

(lnxi − µ̂)2

n

MME
The parameters µ and σ could be obtained by following equations:

µ = ln
( E[X]2√

V ar[X] + E[X]2
)

σ2 = ln(1 + V ar[X]
E[X]2 )

By using the empirical mean and variance, we can calculate the corresponding estimators for µ and
σ.

Weibull distribution
The cumulative distribution function of a Weibull variable X:

F (x, β, α) = 1− e−( x
α

)β

for x ≥ 0 and F (x, β, α) = 0 for x < 0
The probability density function:

f(x, α, β) =
{

β
α

(
x
α

)β−1
e−( x

α
)β x ≥ 0

0 x < 0
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Where β > 0 is the shape parameter and α > 0 is the scale parameter of the distribution.
The mean and variance of a random variable following a Weibull distribution:

E(X) = α Γ(1 + 1
β

)

V ar(X) = α2[Γ(1 + 2
β

)− (Γ(1 + 1
β

))2]
MLE

LL(α, β|x) = ln(L(α, β|x1, x2, ..., xn)) =
n∑
i=1

ln(f(xi|α, β)) =

The MLE method for Weibull requires some additional steps. We firstly recall the location-scale
property of ln(X):
We note Y = ln(X) then the cumulative probability function of Y is:

P (Y < y) = P (ln(X) ≤ y) = P (X ≤ exp(y)) = 1− exp
[
−
(exp(y)

α

)β]
= 1− exp

[
− exp

{(
y − ln(α)

)
.β
}]

= 1− exp
[
− exp

(y − ln(α)
1
β

)]
= 1− exp

[
− exp

(y − u
b

)]
(b = 1

β
, u = ln(α))

The corresponding sample of Y is: y1, y2, ..., yn yi = ln(xi)
We have F (y) = 1− exp

[
− exp( (y−u)

b )
]

= G(y−ub ) with G(z) = 1− exp(−exp(z)) with g(z) = G
′(z) =

exp(z − exp(z)). Thus,
f(y) = F

′(y) = d

dy
F (y) = 1

b
g(y − u

b
)

with
ln(f(y)) = −ln(b) + y − u

b
− exp((y − u)

b
)

As partial derivatives of ln(f(y)) with respect to u and b we get

δ

δu
ln(f(y)) = −1

b
+ 1
b
exp(y − u

b
)

δ

δb
ln(f(y)) = −1

b
− 1
b

y − u
b

+ 1
b

y − u
b

exp(y − u
b

)

and thus as likelihood equation:

0 = −n
b

+ 1
b

n∑
i=1

exp(yi − u
b

)

or
exp(u) = [ 1

n

n∑
i=1

exp(yi
b

)]b

and
0 = −n

b
− 1
b

n∑
i=1

(yi − u
b

) + 1
b

n∑
i=1

yi − u
b

exp(yi − u
b

)

[5] shows that β is the root of following equation:

0 =
n∑
i=1

yiwi(β)− 1
β
− ȳ where wi(β) = exp(yiβ)∑n

j exp(yjβ) with
n∑
i

wi(β) = 1
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Then the estimation of β could be solved by numerical method.

MME
The two first moments are:

m1 = (̂µ) = 1
α

1
β

Γ
(
1 + 1

β

)
m2 = µ̂2 + σ̂2 =

( 1
α

) 1
β
[
Γ(1 + 2

β
)− (Γ(1 + 1

β
))2
]

Then:
σ̂2

µ̂2 =
Γ(1 + 2

β )− Γ2(1 + 1
β )

Γ(1 + 1
β )

=
Γ(1 + 2

β )
Γ(1 + 1

β )
− Γ(1 + 1

β
)

Which depends only on parameter β. Therefore, the estimator of the shape parameter is obtained
using the function:

h(c) =
(
1 + S2

x

x̄2

)(
Γ(1 + 1

β
)
)
− Γ(1 + 2

β
)

The MME estimator of β is the solution of h(β) = 0. After the estimation of β, the scale parameter
is estimated by:

α̂ =
( x̄

Γ(1 + 1
β̂

)

)β̂
Pareto distribution
The cumulative probability function of the Pareto random variable is as following:

FX(x) =
{

1− (xmx )α x ≥ xm
0 x < xm

The probability density function:

fX(x) =
{

αxαm
xα+1 x ≥ xm
0 x < xm

The mean and variance of a random variable following a Pareto distribution:

E(X) =
{
∞ α ≤ 1
αxm
α−1 α > 1

V ar(X) =
{
∞ α ∈ (1, 2]
( xmα−1)2. α

α−2 α > 2

MLE
lnfX(x) = lnα+ α.lnxm − (α+ 1)lnx

Hence,
n∑
i=1

f(xi|α) = n.lnα+ n.α.lnxm − (α+ 1)
n∑
i=1

xi

The MLE estimation of parameter α is the solution of the equation:
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δ

δα

n∑
i=1

f(xi|α) = n

α
+ nlnxm −

n∑
i=1

lnxi = 0

Hence,
α̂ = n∑

i lnxi − n.lnxm
MME
The MME estimation of α is deduced by the first moment equation.

α̂MME = x̄

x̄− xm
Generalized Pareto Distribution
The cumulative distribution function of random available X following the Generalized Pareto Distri-
bution:

F(ξ,µ,δ)(x) =

 1−
(
1 + ξ(x−µ)

δ

)− 1
ξ

for ξ 6= 0
1− exp(−x−µ

δ ) for ξ = 0

The probability density function:

f(ξ,µ,δ)(x) = 1
δ

[
1 + ξ(x− µ)

δ

](− 1
ξ
−1)

for x ≥ µ when ξ ≥ 0 and µ ≤ x ≤ µ− δ
ξ when ξ < 0

The mean and variance of a random variable following a Generalized Pareto Distribution:

E(X) = µ+ δ

1− ξ , ξ < 1

V ar(X) = δ2

(1− ξ)2(1− 2ξ) , ξ <
1
2

If ξ ≥ 1/2 variance doesn’t exist, if ξ ≥ 1 even mean doesn’t exist.

With shape ξ > 0 and location µ = σ/ξ , the GPD is equivalent to the Pareto distribution with
scale xm = σ/ξ and shape α = 1/ξ.
MLE

LL(u, σ, ξ|x)
n

= −ln(σ)− (1 + 1
ξ

).
n∑
i=1

ln
(
1 + ξ

xi − µ
σ

)
We take ρ = ξ

σ , then estimator of ξ and ρ are solution of:

(ξ̂, ρ̂) = argmax{−ln(ξ
ρ

)− (1 + 1/ξ).
n∑
i=1

ln(1 + ρ(xi − µ))}

MME
The estimators of ξ and σ are:

x̂i = 1
2
[
1− (x̄− µ)2

S2
x

]
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σ̂ = 1
2(x̄− µ)

[
1 + (x̄− µ)2

S2
x

]
b.2. Truncated distributions
Why truncated distribution?
In statistical theory, we knew about usual distributions for extreme value studies, for example: Weibull,
log-normal, log-gamma, etc. However, those distributions have ranges of variable’s values in entire
set R or R+ while as discussed previously, we’re interested in atypical claims, i.e, whose amounts are
higher than certain thresholds. That’s why we will analyse the use of the "truncated distributions" -
whose range are bounded at some levels.
Definition:
If g(x) and G(x) is the density and cumulative distribution functions of a random variable X, then
the density distribution function of the truncated variable Y = X/a<X<b is as following:

fY,a,b(x) = g(x)
G(b)−G(a) ∗ Ia≤x≤b

Note from this formula that f(x) has exactly the same parameters as g(x).
In our case, we will use left-truncated distribution since our data accepts values in the interval [R,
+∞) where R is the threshold of atypical claims.
We call g(x) as original distribution, and f(x) as truncated distribution.
The following example shows the difference between the original distribution and its truncated version:
Example 1: two-side truncated logistic distribution and logistics distribution.
Following is the histogram of X with logistics distribution and Y with truncated logistics distribution.
Its parameters are:

• Location = 0

• Scale = 2
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Figure 2.2: Example of truncated distribution - Logistic distribution

The density of Y concentrates in the interval (-5, 5) that makes higher density values of Y in this
region than density values of X.

Cumulative probability function and inverse probability function are defined as following:

FY (x) = G(max(min(x, b), a))−G(a)
G(b)−G(a)

F−1
Y (p) = G−1(G(a) + p.(G(b)−G(a)))

The mean and variance are calculated as following:

E(X) =
∫ b

a
xfX(x)dx

,

V ar(X) =
∫ b

a
{x− E(X)}2fX(x)dx

In this document, one of our objective is to compare the efficiency of left-truncated distributions and
their usual version in fitting severity of atypical claims. We will try to test the following truncated
distributions:

• Left-truncated Log-normal

• Left-truncated Weibull

Left-truncated Log-normal
We consider the variable X following left-truncated log-normal distribution then X ∈ [u,+∞].
Mean and variance:

E(X) = u+ exp(µ+ σ2

2 )
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V ar(X) = exp(2.µ+ σ2).(exp(σ2)− 1)

MLE
The MLE estimators for µ and σ are:

µ̂ =
n∑
i=1

ln(xi − u)

σ̂ = n

n− 1

n∑
i=1

[
ln(xi − u)− µ̂

]2
MME
The estimators MME for µ and σ are:

σ̂2 = ln
[
1 + ( S2

x

x̄− u
)2
]

µ̂ = ln(x̄− u)− σ̂2

2
Left-truncated Weibull
The cumulative distribution function of left-truncated Weibull:

F (x) =
[
1− exp

(
− (x− u

α
)β
)]

Where u is the atypical thresold, β the shape parameter, α the scale parameter.
The mean and variance are given by:

E(X) = u+ α.Γ
(
1 + 1

β

)

V ar(X) = α2[Γ(1 + 2
β

)− (Γ(1 + 1
β

))2]
Similar to the usual version Weibull distribution, we obtain following estimators of α and β
MLE
The shape parameter c is the solution of h(β) = 0 where:

h(β) =

∑n
i=1

(
(xi − u)β.ln(xi − u)

)
∑n
i=1(xi − u)β − 1

β
−

n∑
i=1

(xi − u)β

Then the estimation of the scale parameter is:

α̂ =
[ n∑
i=1

(xi − u)β̂
] 1
β̂

Advantage and limitation
Advantage

• This method helps to have very good views on frequency and severity of claim amounts. It helps
to predict better the tail of the distribution of claim amounts.
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• When there are few claim data higher than the retention, external or internal reinsurer may
ask for claim amounts lower than the retention and use this method to simulate claim amount
higher than the retention.

Limitation

• It’s not applicable when there is no possibility to obtain sufficient claim data.

• The model is purely based on claim data therefore doesn’t consider the risk profile of the portfolio
(age, sum at risk distribution, etc.)

2.1.2.3 Burning Cost method approach

Definition: “Burning Cost ratio”
Burning Cost ratio for underwriting year N is ratio between the ultimate claim amount occurred
during year N and the exposure basis of year N. The earned premium income or the total sum at risk
of year N could play the role as “exposure basis” which represents the size of portfolio. The larger
portfolio is likely to have bigger ultimate claim amount.

BCi = Si/Ci

Where: BCi, Si and Ci are the burning cost ratio, the ultimate claim amount and the exposure basis
for underwriting year i.
The “exposure basis” isn’t obliged to be the earned premium income or total sum at risk. One can
replace it by another indicator which allows having a reference of the development of insurance/rein-
surance portfolio, for example: the total ceded Sum at Risk.
If we use “The total Sum at risk” as “exposure basis” for the calculation of burning cost ratio of a
reinsurance portfolio:

BCi = Si
SARi

Where:

• Si is the total ultimate reinsured claim amount occurred during year i

• SARi is the total SAR in the underwriting year i

Reinsurance pricing XL per life by Burning Cost ratio Principle: The burning cost ratio for
the pricing underwriting year is estimated by the (weighted) average of last n years burning cost ratio.

B̂CN = 1
n
.(BCN−1 +BCN−2 + ...+BCN−n)

Or, weighted average by premium basis:

B̂CN = BCN−1.CN−1 +BCN−2.CN−2 + ...+BCN−n.CN−n
CN−1 + CN−2 + ...+ CN−n
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Finally, the pure premium is calculated by:

E(S) = B̂CN ∗ SARN

Calculation of IBNR
In the numerator of the Burning Cost ratio, we have to calculate the "ultimate" amount of claims
occurred in the year. The current information gave the view at 31/12/N-1. Wae have to estimate the
level of IBNR of reinsured claims at this time. There is a number of traditional approaches for the
estimation of IBNR, for example: Chain ladder, Bonheuter Ferguson, Boostrap. However, from the
practical point of view, we will consider in this thesis the Chain ladder approach which is deterministic
and easy to use.
As mentioned, the estimation of IBNR consists two parts: IBNyR (Incurred But Not yet Reported)
and IBNeR (Incurred But Not enough Reported).
IBNyR
The chain ladder method applies to the number of claims Mi,j triangle.

Figure 2.3: Number of claims triangle

The development factor of the number of claims from year j to year j +1:

f̂j =
∑n−j
i=1 Mi, j + 1∑n−j

i=1 Mi,j

, j = 1, . . . , n− 1

Where Mi,j is the number of claims occurred in year i and reported before or in year j.
From the development factor we can estimate the ultimate number of claims:

M̂i,n = Mi,n−i+1 ×
n−1∏

j=n−i+1
f̂j

IBNeR
The IBNeR effect takes into account the development in terms of amount of occurred claim.

ĝj =
∑n−j
i=1 Si, j + 1∑n−j

i=1 Si,j
, j = 1, . . . , n− 1
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Where Si,j is the total amount of claims occurred in year i and reported before or in year j. It
means, we consider also the development of late declared claims. The "double" triangle is used for the
calculation of Chain-ladder factors:

Figure 2.4: Amount of claim triangle

Ultimate claim amounts
As in deterministic approach, we don’t aim to add "new claim" in the list, we will apply both IBNyR
effect and IBNeR effect in the claim amount. We have the ultimate single claim amount:

Xi,n = Xi,n−i+1 ×
n−1∏

j=n−i+1
f̂j ×

n−1∏
j=n−i+1

ĝj

The ultimate reinsured claim amount of the year of occurrence i:

Si =
Ni∑
Xi,n

Where Ni is the number of claims occurred in year i.
Remark: "AS-IF" calculation for Burning Cost approach:
The ultimate claim amounts and exposure basis should be recalculated in order to have equivalent
values in the current year (N) (taking into account inflation impact). This "AS-IF" calculation is
described in the section 2.1.3.3.
Finally, we have the result for pure premium:

E(S) = B̂CN ∗ SARN

However, this deterministic methode doesn’t give us a view on volatility of reinsured annual claim
amount. The Cost of capital part in the pricing formula could be calculated by using a hybrid
approach: using life shock described in Appendix A.

Advantage and limitation
Advantage

• It’s deterministic approach which is easy to implement and it helps to have a global view on the
claim amounts.

• In case that there are few claims, the Burning Cost method can still give a price.

Limitation
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• The Burning Cost approach bases only on the historical claims, it doesn’t consider the detail on
the exposure of portfolio (age, volatility of SAR, number of insured, etc.)

• The approach is not suitable when there are no historical reinsured claims. When there are few
claims, the method still works but the result isn’t very reliable due to the fact that in general,
reinsurance claims are very volatile, the method doesn’t help to predict potential reinsured
claims.

• The Burning Cost approach is a deterministic approach which relies on the average of annual
results therefore it doesn’t take into account the volatility of reinsured claim amount.

2.1.2.4 Incident rate approach

Sometimes, the XL per life treaty isn’t working and we don’t get enough claim data to perform
frequency and severity model. The Burning Cost method can give in some cases a price but it has the
limitation to do not take into account the portfolio’s risk profile and volatility of claims.
In the data communicated by insurer, we can obtain a model point of the insurance portfolio: the
average age and the number of insured per range of SAR, i.e:

Figure 2.5: Model point for XL per Life pricing

Methodology:
Assuming that we can obtain the mortality Best Estimate of the mortality insurance portfolio, i.e. qxi
table, for each range of sum at risk i, the random variable amount of claims follows a binomial law.
We have following parameters applied in the method:

• The total number of experiments, i.e. the number of insureds Ni

• The probability of death, qxi

Given SARrei , the average sum at risk of the range, the mean and variance of the reinsured claim
amount belonging to the range i are calculated by:

• E(Xi) = qxi .Ni.SARrei
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• V ar(Xi) = qxi .(1− qxi).Ni.SARrei
2

It is then possible to sum all those variables together to get the amount of claims ceded to reinsurer.

• E(S) =
∑
i qxiNiSARrei

• V ar(S) = V tMV with V the vector of standard deviation of X and M the matrix of covariance
reflecting the dependency between bands (correlation assumed).

The pricing formula could be the traditional combination of mean and variance:

P = E(S) + βσ(S)
1− expense

Advantage and limitation
Advantage

• The incident rate approach takes into account the portfolio’s information such as age, average
SAR per range, etc.

• Compared to Burning Cost approach, mortality incident rate approach gives an idea about the
volatility of the claim amount.

• The method works even when we have very few claim data

• Simplicity of the calculation: Once mortality Best Estimate rate is available, the expected value
and variance of the claim amount are calculated quite easily.

Limitation

• There is a basic risk in the calculation. The Best Estimate mortality rate represents the insurance
claims while we are in the issue of estimating reinsured claims. The mortality rate may be lower
because of a better underwriting process for high sum insured cases. It doesn’t fully take into
account historical reinsured claims.

2.1.2.5 Combined approach

The combined approach between Burning Cost which uses the historical reinsurance claim and the
incident rate approach which uses the portfolio information (age, average SAR per range, etc.) could
help to use the maximum amount of available information.
Principle: We suppose that the historical reinsured claim information represents correctly the average
claim amount but it doesn’t sufficiently illustrate the variance, for example, due to limited claim data.
The idea is to keep this average view and use the variance view given by the qx Best Estimate as
described in incident rate method.
Methodology:
From the historical claim amount, we determine the Best Estimate mortality of reinsured portfolio.
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qREx = Sreal

SInsuranceBest.Estimate

× qxInsuranceBest.Estimate

Where:

• qREx is the Best Estimate mortality rate for reinsured claim

• Sreal is the historical amount of reinsured claim

• SInsuranceBestEstimate is the hypothetical reinsured claim amount calculated by using qx Best Estimate
of insurance portfolio (as in the section "incident rate approach")

• qxInsuranceBestEstimate is the qx Best Estimate rate of the insurance portfolio

Once the qREx is calculated, the price is then calculated in the same way as in the incident rate
approach.
Advantage and limitation
Advantage

• It takes into account both historical reinsured claim information and portfolio information.

Limitation

• It doesn’t keep the view in variance shown by historical reinsured claims information as the
frequency-severity does. However, when the variance of reinsured claims view is judged as not
creditable (for example, due to limited claim data, the treaty is not very working, etc.), we can
consider that this limitation is not significant.

2.1.3 Application of proposed pricing models

2.1.3.1 Data

We will consider the XL per Life reinsurance treaty as described at the beginning of the chapter. The
information given in a Renewal period to reinsurers are as following:

• Contractual elements: Draft of reinsurance treaty with condition terms such as: Retention,
Limit, the number of reinstatement, etc.

– Retention: 1M

– Limit: 5M

– Number of reinstatement: 15

• Historical claim amounts above the retention level containing:

– Amount of claim at 1st declaration date
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– Date of occurrence. Claim historic from 2010 to 2016. In practice, the year 2016 isn’t
complete as the Renewal period takes place normally before year end. It requires in the
modelling some treatment for example: proportionally adding the claim amount in order
to obtain full year claims. However, in this case study, for the sake of simplification, we
assume the claim data is updated to full year 2016.

– The claim amount and status (open/closed) at the end of each year

• Portfolio profile: The model point presented in chapter 1 is used:

• The earned premium income for the period 2010-2016 and the expected premium income for
2017:

• The total SAR for the period 2010-2016 and the expected SAR for 2017.

2.1.3.2 Claim data descriptive statistics

Frequency development 2010-2016:
The following triangle contains frequency development information of claims above retention 1M with
occurrence year and development year viewed at 31/12/2016. Note that the number shown in the
diagonal is the number of claims known at 31/12/2016.
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Severity viewed at present year:
The following tables shows some descriptive statistics about the gross amount of claims (before rein-
surance) viewed at 31/12/2016:

We should notice that in the claim data, there are "closed" claims which are considered to no longer
develop and "open" claims which would have potentially IBNeR amount in the future. The number of
"closed" and "open" viewed at 31/12/2016 are resumed in the following table:

We can see that all claims occurred in 2010 and 2011 are all considered as "closed". This situation is
very common in death claims: in general, all claims are reported and closed after 5 years or less.

2.1.3.3 Pricing

a) Frequency - severity approach

Frequency fitting:
Step 1: Determining the ultimate number of claims:
By using Chain-ladder we can estimate the ultimate number of claims by occurrence year. This step
helps us take into account the IBNyR effect.

The IBNyR development factor from N+i to N+i+1:

The IBNyR development factor from each occurence year to it’s ultimate number:
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Step 2: Fitting the ultimate number of claims

The ultimated number of claims is fitted with Poisson or Negative Binomial distribution. As the
number of data points is small, the MME method could be used.
As E(N) = 8 > V ar(N) = 2.3, the chosen distribution should be Poisson with parameters: λ = 8

Severity fitting:
Step 1: Estimation of IBNeR effect
The IBNeR development factor from N+i to N+i+1:

The IBNeR ultimate development factor of claims for each occurrence year to it’s ultimate amount:

From the IBNeR development factors given by method Chain-ladder, we can see that claims occurred
between 2010 and 2014 will no longer develop.

Step 2: Taking into account inflation
Given the inflation rate, we could calculate also the inflation impact based on a 100-scale index:
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Step 3: Taking into account evolution of portfolio exposure. Final AS-IF claim amount
Given the total SAR per information, we can calculate the impact of the evolution of portfolio exposure
based on a 100-scale index:

The final AS-IF claim amount is calculated by applying the inflation index and portfolio exposure
index. The coefficients are calculated per occurrence year as following:

These coefficients are to be applied to the claim amount in order to have the AS-IF amounts. It means
that a claim amount X occurred in 2010 is equivalent to a claim amount of 1.16 × X in 2017. The
following table shows the list of 10 largest claims and their AS-IF amount.

The AS-IF claim amounts are taken as the sample of the calibration of severity. As mentioned above,
6 distributions are tested:

• Log-normal

• Weibull
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• Left-truncated Log-normal

• Left-truncated Weibull

• Pareto

• Generalized Pareto Distribution

We have following result for goodness of fit criteria:

Figure 2.6: Goodness of fit criteria

These criteria shows that the "best fit" distribution should be truncated Weibull MLE. The parameters
of the calibrated Weibull MLE are:

The additional checks containing quantile comparison and cumulative distribution function plot are
performed in order to validate the choice.
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Figure 2.7: Truncated Weibull cumulative distribution function

Looking at the quantile comparison in the table above, the truncated Weibull distribution gives more
prudence in the tail of the distribution and very good fit in the beginning part of the distribution. In
addition, given the fact that the existed claims are only at the first ranges of Sum At Risk, we validate
the truncated Weibull distribution.
It is interesting to compare the goodness of fit of truncated Weibull with its original (non truncated)
version of the distribution:
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Figure 2.8: Usual Weibull and lognormal cumulative distribution function

From the graph above, we can see that the original version gives a good fit at the tail of the distribution
but it has bad quality in the beginning of the distribution.
Another disadvantage of using the original version is that it will give a value lower than the threshold
in the simulation phase, which doesn’t seem logical when we want to simulate claims higher than the
retention.

Pricing result
From the simulation we obtain following result for mean, variance of annual reinsured claim amount
and price of the treaty based on these two elements:

The result above corresponds to the following assumption: β = 10% and expense = 10% in the
formula S = E(S)+β×σ(S)

1−expense

b) Burning Cost approach
As described, the Burning Cost is a deterministic approach which apply both IBNeR and IBNyR
effects in the development of claim amounts. The ultimate claim amounts are then recalculated in
"AS-IF" amounts taking into account the inflation impact. The pattern of ultimate claim amount,
exposure basis per occurrence year and the Burning Cost based on the simple average are shown in
the table below:
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The pure premium is the product of average burning cost and the expected exposure basis of 2017.
Pure premium given by Burning Cost approach: EUR 4,728,270. The reinsurer can add their cost of
capital and expense into the price. The cost of capital is calculated as described in appendix A (at
about EUR 445, 952 × 110% = 490, 547 assuming a transmission factor of 110%). Finally, we have
reinsurance premium at about EUR 5, 798, 686

c) Incident approach
Expected value and the variance of annual reinsured claim amount calculated by qx Best Estimate
insurance can be shown in the following table:

Figure 2.9: Incident approach

Suppose that there is no correlation between different ranges of SAR, then V ar(S) =
∑
i V ar(Xi).

In final, we have:

• E(S) = 15.7m

• σ(S) = 5m

If we apply the same pricing formula as in the frequency-severity approach (β = expense = 10%),
then we have P = 17.9m.
This price has only indicative sense since it has no link with the historical reinsured claim amount.

d) Combined approach
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The combined approach between Burning Cost and incident rate uses both results of two approaches.
From the expected annual claim amount estimated in Burning Cost and incident rate approaches, we
estimate the discount rate in qx Best Estimate:

qREx = 4.7
15.7 × q

BE
x = 30.1%× qBEx

By using the same calculation as in the incident rate approach and the same pricing formula with
β = expense = 10%, we obtain:

• E(S) = 4.7 m

• σ(S) = 2.7 m

• Final premium = 5.56 m

e) Conclusion
In summary, we have following results given by 4 approaches:

Figure 2.10: Summary - results of XL per life reinsured risk-costing models

(*): All prices are calculated based on the same pricing formula using pure premium, standard devi-
ation and expense except for Burning Cost approach as this deterministic approach doesn’t calculate
the variance.
We have following conclusion:

• The frequency and severity approach purely based on the historical reinsured claim information.
Its outputs are therefore expected value and variance based on historical amounts.

• The Burning Cost approach also purely based on the historical reinsured claim information.
However, it’s deterministic approach which applies both IBNeR and IBNyR effect on the claim
amount viewed at 31/12/N-1. The method doesn’t calculate the variance of annual reinsured
claim. The price is calculated based on pure premium and cost of capital estimated from a
hybrid method (life shocks for SCR and PC approach for pure premium).

• The incident rate approach in this case has only indicative purpose because it takes into account
only the portfolio information, the best estimate mortality view is based on insurance portfolio
(for internal reinsurer) and reinsurer’s experience in the market (for external reinsurer).

• Combined method between Burning Cost and Incident Rate could help to return to the expected
claim amount level as in Burning Cost calculation and in addition, to have a view on variance
when there are few historical claims.
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From the different views on the price, an internal reinsurer could be able to define their strategy of
cession and an insurer can challenge the price of external reinsurers.

2.2 XL per event

2.2.1 Risks covered by XL per event (CAT treaty)

The CAT treaty covers following risks:

• Earthquake

• Tsunami

• Flood

• Storm

• Volcanic activities

• Forest fires

• Industrial hazard

• Terrorism

And the following risks are not covered by CAT treaty:

• Famine

• Epidemic, pandemic

• Extreme temperature

• Drought

The reason for that they are not covered is these types of event normally happen during a long period
and it’s difficult to conclude exactly the cause of the death for a big number of victims.

2.2.2 Treaty conditions

The treaty CAT covers accidents caused by the types of events mentioned above but there are in
addition other conditions for example:

• The CAT event occurs in the covered period of the treaty, i.e. from 1 January to 31 December;

• There are at least M victims caused by the event and the amount of claim exceeds the retention
of the treaty. In general, M is often taken between 3 and 5 deaths.

• The CAT treaty covered victims during first three days of the event. After that, it’s often
considered as a second event.
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2.2.3 Data analysis

We recall the available data for the pricing of CAT treaty:
Portfolio data:

And,

Contractual elements:

The treaty covers both natural catastrophes (CAT NAT), terrorism events, and also man-made non
terrorism events (traffic accidents, industrial accidents, etc.)

Public catastrophes database - EMDAT
EMDAT database contains historical natural and man-made non terrorism catastrophic events.
The treaty covers an insurance company based in France. As at the renewal period, we don’t have
the full year 2016 database, we suppose to use the historical catastrophic events during the period
1970-2015 in order to calibrate the risk. We don’t consider the events happened before 1970 to make
sure that the data is enough reliable and that we have the similarity of condition (infrastructure,
prevention, etc.) as today.

Frequency:
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In average, there are 3 events per year are recorded in EMDAT.

Severity:

It’s interesting to note that the median and mean are far lower than the max. In order to have a
better view on the number of victims, we plot them per occurrence year:
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There are 6 events with more than 100 deaths in the tail of the sample. Most of the remaining events
concentrate in the range [1, 50]. The median of the number of deaths is 11.

Public terrorist acts database - GTD
Frequency:

The graphic above shows that there were a lot of terrorist acts in the period 1975-1995 then it was
very few events until recent period. However, in 2015, it was suddenly recorded the largest number of
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terrorist acts in France (15 attacks).

Severity:

The graph above about fatality of terrorist acts in France shows that almost all of events have less
than 20 deaths. There is only one irregular point: 92 people were killed in Bataclan attack.

Population:
The population of France is taken from http://data.worldbank.org/ with 66.8 millions of inhabitants
in 2016.

2.2.4 Pricing model

2.2.4.1 Deterministic model

When we say "deterministic", it means the method doesn’t require Monte-Carlo simulation.
One of the first pricing models was developed by Strickler (1960): The reinsurer obligation is modeled
by 2 factors:

• The frequency distribution of the events which cause more than M deaths

• The distribution of the reinsured claim amount

Distribution of claim amount:
Denote C the claim amount of one insured life in a CAT event. ¯SAR the average sum at risk per head.
According to Strickler’s assumption, C follows the following distribution: C ∼ SAR × Exp(1) where
Exp(1) is the exponential distribution with mean 1. Then, in an event of n deaths, the total claim
amount of this event, denoting by Z, follows the following distribution: Z ∼ SAR × Γ(n, 1) where
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Gamma(n, 1) is Gamma distribution. The underlying assumption here is the claim amounts per life
in one CAT event are independent, then the sum of independent exponential distribution is a Gamma
distribution.
If wn(z) is the density distribution function of Z, then:

wn(z) = ez
zn−1

(n− 1)!
Number of victims:
By analyzing the SBMLIC database (Statistical Bulletin of the Metropolitan Life Insurance Company),
Strickler found that the annual number of victims among 1 million people of the general population
due to CAT events with more than n deaths could be estimated by:

A(n) = 8× 1001/n × n1/3

A(1) represents the total number of victims over 1 million people due to CAT events during the year.

The annual number of CAT events:
The number of CAT events which cause exactly n deaths over 1 million people of general population
is calculated by:

H(n) = A(n)−A(n− 1)
n

Hence, the probability that an event causes exactly n deaths when it occurs is:

h(n) = H(n)∑∞
i=0(H(i))

Note that when n → ∞, H(n) → 0 and h(n) → 0. Strickler used a conservative assumption that
H(n)→ 0 when n > 1500.

Distribution of the claim amount:
As mentioned, in CAT treaty, the reinsurer will pay only when the event causes from M deaths. The
density probability function of the amount of claim:

w(n) =
∞∑

n=M
h(n)wn(z)

Limitation of the Strickler model:

• The function A(n) is predefined and applied only for the US database at the giving time of the
extraction of data.

• The assumption that H(n) = 0 when n > 1500 is a strong assumption. In history, it exists some
CAT events that cause a much higher number of death. Example: Tsunami in Indonesia in 2014
killed 165,708 people.

• The assumption about the claim amount which follows Gamma distribution is a strong assump-
tion.

Strickler model has strong assumption but given the availability of data at that time, it already
demonstrated a good approach and give us the idea to develop new model.
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2.2.4.2 Model by simulation

Erland Ekheden (2008) published in his thesis new model which at the same time reuses Stricker’s
ideas and takes into account some improvements compared to Strickler’s model:

• The frequency and severity of CAT events are calibrated from an international source of data

• The distribution of claim amount divided by the average sum at risk is again assumed to be
Gamma distributed

Notion:

• K: the number of catastrophic events occurred during the period of contract (we consider the
case of 1 year period);

• Xk: the number of victims in the general population due to kth event.

• Yk: the number of victims in the insured portfolio

• Zk: the amount paid by the insurer for the event k

• Zrek : the amount paid by the reinsurer for the event k

• SARind: the average sum at risk of individual business

SARind = Total sum at risk individual business
Total number of heads individual business

• SARgrp: the average sum at risk of group business

SARgrp = Total sum at risk group business
Total number of heads group business

• SAR: The average sum at risk of the whole portfolio (both individual and group)

• q: insurance penetration rate

q = the number of insured
population of the covered zone

• pr.region: sub-region penetration rate

pr.region = population of the covered zone
population of the simulation zone

• R: retention of the treaty

• L: limit of the treaty

Frequency:
Note Km the number of CAT events which cause at least m deaths in the calibration region. We
suppose that Km is:
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• A Poisson variable if E(Km) ≥ V ar(Km)

• A Binomial Negative distribution if E(Km) < V ar(Km). In general, we observe a over-dispersion
(variance > mean). The BN distribution gives us this property.

The parameters of frequency are calibrated easily by the method of moment.
In some cases, depending on the countries, the covered zone doesn’t contain enough data, we have to
calibrate based on a larger region by adding some neighbor countries.
Example: Luxembourg. We would regroup it with Germany, France, Belgium. We note « the region
»: Luxembourg, Germany, France, Belgium and « the sub-region » : Luxembourg.
The the pr.region parameter is used:

pr.region = population of the covered zone
population of the simulation zone

We note Jm the number of CAT events which cause at least m deaths in the covered region:

Jm ∼ Binom(Km, pr.region)

Severity:
We suppose that the severity in sub-region has the same characteristic as in the region. We calibrate
the parameters of severity distribution in the regional level. We note X the number of deaths in the
region due to a CAT event. X can receive extreme values in the tail of distribution. Therefore, we
can model X by a GPD (Generalized Pareto Distribution):

X ∼ GPD(m,σ, ξ)

We note Y the number of death in the insured portfolio due to the event that caused X death in the
region. .
We suppose that given X, Y follows Binomial distribution.

Y |X ∼ Binom(X, p)

In order to take into account the dependency of victims in a CAT event, we introduce here a parameter
θ.
Then, p follows Beta distribution given X:

p|X ∼ Beta(qθln(X), (1− q)θln(X)), θ ∈ R

where q is the insured penetration rate: q = total number of insureds
population of the covered zone

Remark:

• if θln(X)→∞ then Y |X ∼ Binom(X, q)

• if θln(X)→ 0 then P (Y = 0|X) = 1− P (Y = X|X) = 1− q
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The parameter θ represents dependency. A small θ implicates high dependency and a big θ implicates
the independence among the victims.

The reinsured claim amount due to CAT events:
In Erland Ekheden’s thesis, the Strickler’s assumption is applied. The amount of claim paid by the
insurer follows gamma distribution multiplied by the average sum at risk per head.

Z = SAR× Γ(y, 1)

Application of reinsurance treaty:

Zre = min(max(Z −R, 0), L)1Y >=m

Hence, the annual reinsured claim amount:

S = min(
Jm∑
i

Zrei , AAL)

Pricing formula:
It should take into account following main components: pure premium, cost of required capital,
expense, number of reinstatement:

Pfinal = PP + CoC

(1− expense) ∗ freinstatement
Where:

• PP: Pure premium

• CoC: Cost of capital

• freinstatement: factor which represents the fact that insurer has to pay reinstatement premium.

Reinstatement factor:
In order to quantify the impact of reinstatement, we consider following consequent cases:
a) We consider the following reinsurance contract: L XS F (without AAL or reinstatement).
S is the sum of N claims of reassured amounts Yi,i=1..N , i.e.

S =
N∑
i=1

Yi

where Y is the reassured amount for sinister X:

Y = min[max((X − F ), 0), L]

In this case, we can say that there is no limit for S in a year, when N →∞ then S →∞.
The pure premium of reinsurance:

P1 = E(S)
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b) We consider the following reinsurance contract: L XS F @ 1 reinst 0 % (free reinstatement).
Note that in this case, the reinstatement is free and AAL = (1 + nb.of.reinst) ∗ L = 2L.
We denote S′ the total annual charge for the reinsurance company, we get:

S′ = Min [S, AAL] = Min [S, 2L]

Then we get the premium P2 for this 1 free reinstatement treaty:

P2 = E(S′)

c) We consider the following reinsurance contract: L XS F @ 1 reinst 100 % (paying reinstatement).
Note that in this case, the reinstatement is paying and AAL = (1 + nb.of.reinst) ∗ L = 2L.
We denote S′′ the total annual charge for the reinsurance company then

S′′ = S′ − premium for reinstatement

In fact, the company must pay S′ and receive an amount called premium for reinstatement denoting
Preinst from the re-insured each time the re-insured want to use the reinstatement. Preinst is a random
factor which depends on the number of claims and claim amounts.

Preinst =


0 if S′ = 0
P3 ∗ S

′

L if 0 < S′ < L
P3 if S′ > L

We can re-write:
Preinst = P3 ∗

S′

L
∗ I{0<S′<L} + P3 ∗ I{S′>L}

We denote P3 the pure premium for this 1 paying reinstatement treaty then we get:

P3 = E(S′′)

= E(S′)− E(Preinst)

= P2 − P3 ∗ [E(S
′

L
∗ I{0<S′<L}) + E(I{S′>L})]

= P2 − P3 ∗ E(Min(S′, L)
L

)

Finally,
P3 = P2

1 + Min(S′,L)
L

Generally, if nb.reinst > 1 we can derive also

P3 = P2

1 + Min(S′,n∗L)
L

where n is number of reinstatement.
Suppose that other charges and expenses are hold from free reinstatement treaty to paying reinstate-
ment treaty so we can apply this formula for the full reinsurance premium.

Cost of capital:
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The SCR corresponding to the quantile 99.5% of the distribution is in general high for CAT risk. It
creates a significant cost of capital for Reinsurer. By consequence, Reinsurer tends to impose the cost
of capital in the price.
The quantile 99.5% normally corresponds to the module SCR Life CAT which doesn’t represent the
full risk taken by Reinsurer. A transmission factor is usually used in order to extrapolate to the full
SCR per treaty. The cost of capital rate is defined based on reinsurer’s view.

CoC = CoCrate × SCRtreaty.level

In this thesis, we assume the cost of capital rate for reinsurer at 8% and the transmission factor from
SCRCAT to the total SCR per treaty is 110%.
The final pricing formula applied to our case:

P = PP + 8%× 110%× SCRCAT
(1− expense)(1 + Min(S′,nL)

L )

2.2.4.3 Development of model by simulation

Advantage and limitation of model by simulation Erland Ekheden
Advantage:

• The model by simulation improved two first limitations of Strickler’s model: Based on two rich
historical databases, it calibrated more exactly the frequency and severity of the catastrophes.

• It partially applied the portfolio information (average sum at risk and number of heads), included
dependency in order to identify if the victims are more likely to be in collective or individual
business.

Limitation:

• It still relies on the strong assumption about the distribution of reinsured claim amount (Gamma
distribution).

• The severity distribution relies directly on Generalized Pareto Distribution without deep quan-
titative justification.

• It doesn’t take into account geographical location information of insureds. For example: con-
centration sites such as building, tower, etc. The simulated scenarios purely based on historical
catastrophic events recored in EMDAT and GTD.

We’ll try to overcome these limitations of the model by proposing following approaches:

(1) For each simulation, when the number of deaths in the insured portfolio is simulated (denoted as
y), we can use the portfolio composition information (model point) to take randomly y heads in the
model point. Hence, the claim amount gross of the reinsurance treaty.

Z =
y∑
i

SARi
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(2) From the calibration of atypical claims in XL per Life pricing section above, we conclude that
truncated distributions seem to get better quality of fit when we calibrate the data from the certain
threshold. In general, having some extreme claims in the tail of the distribution is one characteristic
of CAT claims. Therefore, we will propose here to test different fat tail distribution and compare their
quality of test in terms of the Maximum Likelihood value:

• Truncated log-normal

• Truncated Pearson V

• Truncated log-gamma

• Truncated Log-logistic

• Truncated Burr

• GPD

(3) Suppose that we have information about 5 most concentrated sites in terms of Sum at Risk. We
suppose that we can estimate the loss in a worst case scenario for each site but we have no idea about
it’s probability of occurrence. By consequence, we add this 5 scenarios in our 1M scenarios simulated
by the model frequency - severity and reassess the simulated distribution of losses.

2.2.4.4 Application

Model’s parameters:

• Region (Used for the calibration): France. Given the descriptive statistics, we conclude that we
have enough data for France and we don’t have to extend to the neighbour countries.

• Sub-region (The covered region): France

• Frequency: Poisson or Negative Binomial

• Severity: Fat tail distributions

Frequency & severity calibration:
The first step consists the choice of threshold for truncated distribution. We noticed that the database
are generally more reliable from 10 deaths.
In addition, for GPD distribution, we use the classic Hill plot in order to determine the threshold.
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Figure 2.11: Hill plot

From the Hill plot, we can see that the threshold could be chosen at 10 where the alpha index has
stabilized.
We compare the quality of fit of GPD versus other distribution:

Figure 2.12: Best fit distribution for the number of victims

From the result table, we always retain GPD distribution which gave the lowest AIC. However, in
practice, we may choose another best fit distribution in another case.
In addition to the calculation of AIC, we try to look at the cumulative distribution function and we
focus on the tail of the distribution to verify the retained conclusion.
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Figure 2.13: C.d.f of GPD vs other distributions

From the cumulative distribution function graph, we conclude that GPD seems to fit the best the
empirical distribution. The traced c.d.f line for GPD is quite closed to the c.d.f line for truncated
log-normal but slightly more prudent in the tail of the distribution after the quantile 0.98.
Comment: We validate the GPD distribution but it was interesting to test other distributions.

By retaining GPD, we have following estimated parameters for frequency and severity distribution:

As E(Freq) < V ar(Freq), the chosen distribution for frequency should be Negative Binomial.
Result:
We generate 1 M scenarios with each corresponds to one year period. The result given by the model
by simulation in 2.2.4.2 shows that there are 481 scenarios where the treaty is trigger. Hence, the
return period is 2079 years. By consequence, the quantile 99.5% is 0 (the return period greater than
200 years).

In this case, the Reinsurer doesn’t incur a loss in an 1/200 event. However, it takes always the
risk which represents by the variance of the annual claim amount. Assume that Reinsurer places its
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SCRCAT as based on the standard error. The SCRCAT could be prudently calculated by the following
formula:

SCRCAT = max[qtsimulated99.5% , qtnormality99.5% ]

The qtnormality99.5% is the hypothetical quantile 99.5% assuming the normality: the annual reinsured claim
amount follows the centered normal distribution N(0, σ). Hence, qtnormality99.5% = Φ−1

99.5%(0, 1) × σ ≈
2.5758.σ.
The table below shows the pricing result based on 3 cases: (a) the reinsured claim amounts fol-
low Gamma distribution; (b) the reinsured claim amounts are simulated by using model point and
randomly choosing the life insureds and (c) adding deterministic scenarios.
For (c): We assume that Reinsurer estimated the 5 biggest deterministic losses are: Building collapse
(100m), and others (25m, 21m, 20m and 15m). We have following results:

Comment:

• The reinstatement factor is very closed to 1. It means, there is very small probability that
Insurer has to pay the reinstatement premium

• The price given by the Gamma assumption is at 148K. When we use the information in model
point, the price is lower. This is due to the lower standard error of claim amount. It can be
explained by the fact that the model point after per life coverage is quite homogeneous in terms
of sum at risk, there is less volatility in this case.

• When we add the deterministic scenarios, both expected value and standard error increase. It
could be explained by the fact that the 5 defined scenarios are more likely in the tail of the
distribution.
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Chapter 3

Optimisation of reinsurance program

In this chapter, we assume that due to business specificity (for example: lack of detailed data per life
which is as mentioned, likely to happen concerning group business), the non-proportional structure is
the most suitable type of reinsurance.
The optimisation of reinsurance consists of the determination of the retention and the limit of the
treaties. At the first state, we assume that the structure of XL per event treaty is unchanged then
we will try to optimize the determination of retention and limit of XL per life treaty by looking at
different economic factors.
At the second step, we study the determination of XL per event treaty’s structure.

3.1 Retention and limit of XL per life

Besides the regulatory or risk appetite constraint, insurer can define its optimal reinsurance based on
its own objectives, for example: optimizing the P&L ceded given the need of decreasing x% volatility,
minimizing the volatility given y% of profit ceded to reinsurer, etc. We will study firstly the relation
among different factors and then determine the optimal reinsurance given each kind of objective.
Limit:
The sum of retention and limit should cover almost all insureds’ sums at risk in the portfolio. The cases
where the sums at risk exceed the sum of retention and limit are considered as "Special Acceptances"
which should be validated by reinsurer whether it’s accepted to be covered in the treaty or not, then
the reinsured amount will exceed the limit of the treaty in this case.
Retention:
Setting retention for insurer depends on and impact on different important fields:
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Figure 3.1: Retention per life management

• Solvency capital requirement: as discussed in last chapters, the level of retention could
impact directly the solvency capital requirement. The higher retention is, the bigger volume is
retained by insurer and the higher required solvency capital is.

• P&L: The reinsurance means a part of expected profit will be ceded to reinsurer in exchange of
other advantages such as volatility reducing, solvency required capital reducing and capacity of
underwriting new business increasing

• Volatility: Excess of loss reinsurance can reduce the volatility of result since it normally covers
atypical risk. One of the reason why insurer calls out reinsurance is that its result is too volatile.

• Risk appetite: The volume of business under insurer’s retention should respect its risk appetite.

• Level of services given by reinsurer: Sometimes, Insurer needs Reinsurer expertise and ser-
vice in order to launch a new product. However, this case is more likely to happen to proportional
reinsurance with quota-share basis which could make Reinsurer as a partner of Insurer during
the development phase of new product. When Insurer grows in terms of experience on claim
management, underwriting, etc. it can reduce the cession and pass to non-proportional rein-
surance. We’re studying in this document the second phase: determining the optimal retention
when Insurer has already relevant experience on the portfolio.

3.1.1 Different factors impacted by the level of retention

3.1.1.1 Expected profit and loss

The expected profit or loss ceded to reinsurer via the XL per Life reinsurance treaty is given by:

P.Lceded = E(Sre)− Pre
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Where:

• P.Lceded is the profit or loss ceded via reinsurance treaty.

• Sre is the claim amount. E(Sre) represents the expected reinsured amount of claims.

• Pre is the reinsurance premium.

The expected claim amount E(Sre) is estimated by the average claim amount over last 5 years historical
claims.
The challenge for insurer consists of the estimation of reinsurance premium. Insurer can profit the
renewal period to obtain prices corresponding to different level of retentions.

3.1.1.2 Solvency capital requirement

The reinsurance has certainly impact on solvency capital requirement. The gain in solvency required
capital could be translated in the gain of cost of capital. The cost of capital is defined as the cost of
for reinsurer while keeping an amount in the available financial resource without using it, for example,
for a financial investment purpose.

CoC = RateCoC × SCR

We will analyse in details in the next section the impact of reinsurance in the solvency capital require-
ment

3.1.1.3 Volatility

The volatility of the portfolio should be measured net of reinsurance:

σ = std(P.Lnet.of.reins)

3.1.1.4 Risk appetite

Each insurer should have it risk appetite framework. In practice, it’s often set as a condition about a
maximum annual amount of claims in 1/20 case or the expected volatility.

3.1.1.5 Level of services provided by reinsurer

The increase in retention means less business and less profit for reinsurer. By consequence, the
level of services provided by reinsurer would reduce. The decision on retention should be made with
consideration about the need of insurer.

In the next section, we will make a focus on the impact of reinsurance on the solvency capital require-
ment.
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3.1.2 Impact of reinsurance in solvency capital requirement

From insurer’s perspectives, the traditional reinsurance can mainly impact the SCRLife and SCRdefault.
We can find in the following graph the common composition of the total SCR of an insurance company.

Figure 3.2: Solvency Capital Requirement tree

For the current reinsurance program, we continue to use the model point established in the chapter
2 and study the impact of reinsurance on this portfolio. For the other reinsurance programs, the
application is the same.

The ceded ratio of portfolio is 10% in terms of Sum At Risk and 6% in terms of number of insureds.
The average retained Sum At Risk is 363,481.

We will study in the following reinsurance program with 2 levels of protection: per life and per event.
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The reinsurance treaties have non.proportional structure: XL per Life and XL per Event. The treaties
have following condition:

• XL per Life: 5M XS 1M

• XL per Event: 10M XS 100M.

For the sake of simplification, we suppose that the portfolio covered only the risk of death (mortality
risk). The benefit is paid directly one time after the event of death.
The Best Estimate mortality table of the portfolio is assumed to be 80% of the mortality table TH.TF
00.02 in France.
When we try to calculate the average qx weighted by SAR for overall portfolio, we obtain a significant
difference between the average qx before and after XL per Life reinsurance. The different between qx
of the portfolio net and gross of reinsurance is 13.8%.

We assume that the Insurer uses the standard formula in their calculation of SCR.
Capital requirement for mortality risk sub.module:
According the simplified formula in standard formula approach, the capital requirement for mortality
risk is calculated as:

SCRmortality = 0.15 . SAR . q .
n∑
k=1

( 1− q
1 + ik

)(k−0.5)

Where:

• q is the expected average mortality risk weighted by the sum assured over the next year. In this
case, we consider that q was estimated at the level of

• n denotes the modified duration in years of payments payable on death included in the best
estimate projection. In this case, we consider that the payment should be made one time
consequently to the event of death. Therefore, n = 0 and

∑n
k=1

(
1−q
1+ik

)(k−0.5)
= 1

• SAR: total sum at risk of the insurer

Hence, finally:
SCRmortality = 0.15 . SAR . q

In the given example, the XL per life treaty could help insurer to reduce SCR mortality by 22%. It’s a
result of the fact that insurer ceded 10% SAR to XL per life treaty and the average mortality weighted
by sum at risk is lower than the average mortality weighted by the SAR gross of reinsurance by 13.8%
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Capital requirement for catastrophe risk sub module:
According the simplified formula in standard formula approach, the capital requirement for life CAT
risk sub.module is calculated as:

SCRLife.CAT = 0.0015 . SAR

The amount 0.0015 × SAR is also considered as the claim amount in case of an 1/200 CAT event.
However, the application of the CAT reinsurance treaty can not reduce the loss amount in case of
1/200 event because the coefficient 0.15% was calibrated in standard formula from a pandemic event
while XL CAT treaty doesn’t cover pandemic. The only impact comes from XL per Life treaty with
10% of reduction in SCR Life CAT.

75



Capital requirement for counter party default sub module:
The counter.party default sub.module reflects in this case the loss due to unexpected default of the
reinsurer.
There are two kinds of exposures, noted type 1 and type 2 exposures:

• The class of type 1 exposures covers the exposures which may not be diversified and where the
counter-party is likely to be rated. It contains reinsurance arrangements.

• The class of type 2 exposures covers the exposures which are usually diversified and where the
counter-party is likely to be unrated.

The reinsurance treaty consists the type 1 exposures.

SCRdef,1 =


3 .
√
V , if

√
V ≤ 7%.

∑
i LGDi

5 .
√
V , if 7%.

∑
i LGDi <

√
V ≤ 20%.

∑
i LGDi∑

i LGDi, if 20%.
∑
i LGDi ≤

√
V

Where the sum is taken over all independent counter-parties and:

• LGDi = Loss given default for type 1 exposure of counter-party i

• V = Variance of the loss distribution of the type 1 exposures

•
√
V = The standard deviation of the loss distribution of the type 1 exposures

When there is only one counterparty, the variance is measured by Bernoulli distribution with parameter
PD.

V = PD × (1− PD)× LGD2

Where:
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• PD is the probability of default

• LGD is the loss-given-default of the counterparty

The value of PD is given by credit quality steps:

The equivalent ratings are evaluated by ESMA as following:

The Solvency Capital Requirement technical specification indicated other cases where credit steps are
not available and also when the reinsurance treaty is under pooling risk concept. For the sake of
simplification, we suppose that reinsurer has a credit quality step 2 and therefore the probability of
default is 0.05%. We assume that the insurer has only one reinsurer which covers both XL per Life
and XL CAT treaty.
When there is only one single name exposure, the variance is calculated as following:

V = PD.(1− PD).LGD2

For a reinsurance arrangement i , the loss.given.default should be calculated as follows:

LGDi = max(0, 50%(Recoverablesi + 50%RMre,i) + F.Collaterali)

where:

• Recoverablesi is Best Estimate recoverables from reinsurance contract i

• RMre,i is risk mitigating effect on underwriting risk of the reinsurance arrangement

77



• Collaterali is Risk-adjusted value of collateral

• F is the factor to take into account the economic effect of the collateral

For the sake of simplification, we suppose that Collateral factor is null.
The risk mitigating effect RMre,i is an approximation of the difference between the (hypothetical)
capital requirement for underwriting risk under the condition that the reinsurance arrangement is not
taken into account in its calculation and the capital requirement for underwriting risk (without any
amendments) (ref. [4])

RMre,i = SCRUW.gross.of.reins. − SCRUW.net.of.reins.

The calculation of RMre,i requires the complete calculation of SCR Life Underwriting on the complete
portfolio. For the sake of simplification, we assume that the given example represents the whole
portfolio, there is no other risk to be consider in the module SCR Underwriting.
The matrix of correlation could be applied to calculate the SCR Life Underwriting:

We assume that SCR lapse, longevity, expense and revision are null, the only sub-modules to be
considered are mortality and CAT. In this case:

SCRLife.UW =
√
SCR2

mortality + 2.ρ.SCRmortality.SCRLife.CAT + SCR2
Life.CAT

where ρ is correlation between sub-module mortality and sub-module CAT: 0.25
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The recoverable best estimate is calculated based on the qx Best Estimate insurance shown in the
section 2.1.3.3 (Incident rate pricing approach) which is used in reinsurance pricing basis.
The calculation of SCRdef is shown in the following table:

The final step consists of the application of the correlation matrice in order to have the total SCR:

For the sake of simplification, we assume that the total SCR consists only Life risk and counterparty
risk. Finally,
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3.1.3 KPIs of cession

In point of view of Insurer, there are two cases that require the optimisation of reinsurance: optimi-
sation without constraint and optimisation under constraint.
In the first case, we assume that Insurer searches for reinsurance agreement with no specific constraint.
The only purpose of reinsurance is to optimize the insurer’s economic key performance indicators
(KPIs); for example: gain in capital requirement versus ceded profit, gain in volatility reduction
versus reinsurance versus ceded profit. We consider following indicators:

3.1.3.1 Cession without constraint

Reinsurance added value (RAV)
Since reinsurance treaty has often negative impact on P&L and positive impact on solvency capital
requirement, we can say that reinsurance is a trade-off between the loss in PL and the gain in solvency
capital requirement.
The reinsurance added value is therefore calculated based on: Reinsurance added value (RAV) = Gain
in cost of capital – Ceded profit. The first expression of this indicator:

RAV1 =
[
CoCgross.of.reins − CoCnet.of.reins

]
−
[
Pre − E(Sre)

]
As CoCgross.of.reins doesn’t depend on reinsurance, we will aim to maximize the second expression of
the indicator:

RAV2 = −CoCnet.of.reins − Pre + E(Sre)

Next, as Sre = Sgross.of.reins − Snet.of.reins and Sgross.of.reins doesn’t depend on the reinsurance, then,
finally, we aim to minimize the following term:

RAV = CoCnet.of.reins + Pre + E(Snet.of.reins)

Insurer could both model the first and third parts of the RAV based on its Best Estimate assumption
and its SCR calculation model. The Pre is; however, depends on Reinsurer’s quotation during the
renewal period.

Coefficient of variation (CV)
The coefficient of variation shows the extent of variability in relation to the mean of P&L. Firstly, we
aim to minimize the coefficient of variation CV1.

CV1 = σ

P.Lnet.of.reins
= σ

P.Lgross.of.reins − Pre + E(Sre)
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Then, as P.Lgross.of.reins doesn’t depend on reinsurance. Sre = Sgross.of.reins − Snet.of.reins and
Sgross.of.reins doesn’t depend on the reinsurance. Finally, we will aim to maximize following term:

CV = σ

Pre + E(Snet.of.reins)

Insurer could both model the σ and Snet.of.reins based on its own Best Estimate mortality.
However, as mentioned, P re depends on Reinsurer feedback during the renewal period.

3.1.3.2 Cession with constraints

Insurer could look for reinsurance with various purposes. We will study following examples:

• (1): The reinsurer looks for a reduction of 10% of its cost of capital.

• (2): The reinsurer looks for ceding 20% of its volatility

We limit our scope of study in the optimisation with constraint.
(1) Ceding 10% of the Cost of Capital:
Similarly to the calculation in the sub-section 3.1.2, we calculate the cost of capital for the list of
retentions from 0 to the maximum SAR (6M) with the steps of 500K and by taking 8% as the cost of
capital rate, we obtain following result in terms of cost of capital:

Figure 3.3: Cost of capital net of reinsurance

Figure 3.4: Cost of capital reduction after the reinsurance

The result shows that the most suitable retention is 1M.
In general, the insurance should place the offer of reinsurance program with 1M retention in the market
and look for the lowest premium.

(2) Ceding 20% of the volatility:
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We model the volatility of claim amount net of reinsurance by using Best Estimate rate:

V ar(S) =
∑
i

qxi .(1− qxi).Ni.SARi
2

Where S: annual amount of claims net of reinsurance. SARi is the average Sum At Risk amount net
of reinsurance of range i.

Figure 3.5: Standard deviation of net claim amount

Figure 3.6: Volatility reduction after reinsurance

The result suggests that the suitable level of retention according to insurers need in this case is between
1.5M and 2M.

3.2 Retention and limit of XL CAT

As described in the previous part, the XL CAT treaty can not help to reduce the SCR. In fact, in
general, the main purpose of XL CAT reinsurance is to protect the portfolio against the catastrophic
events with extreme losses.

The limit of CAT treaty should be normally set to cover the Probable Maximum Loss in one single
event. The PML requests a specific study based on the real exposure of insured portfolio on some very
concentrated site: building, working factory, etc. and also eventually geological studies, etc. This is
not the purpose of this report and therefore we will just mention about it here without further details.

The retention of CAT treaty should correspond to the maximum loss that the insurance company can
sustain in one single event. Each insurance company should define in their risk appetite for one single
CAT event. The risk appetite framework of insurance company is also not the scope of our study.
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Conclusion

The proposed risk-costing or pricing models for reinsurance treaties could help the internal reinsurer
to challenge reinsurer’s prices and define the best practice in terms of cession in a big insurance group.
Due to the nature of data in reinsurance, it doesn’t exist an unique model which fits all cases.

For XL per life, the reinsurer could apply a frequency-severity calibration model purely based on
claim data when there is sufficient claim data. Even when the treaty is not working, this model can
be always used if reinsurer can obtain the claim data below the retention. This thesis proposes a
better quality of fit given by truncated distributions compared to usual distributions. When having
less claim data, the reinsurer could use alternative methods such as Burning Cost or incident rate or a
combined method. The combined method helps to use both view in Best Estimate of insurance claims
and historical reinsured claim data.

For XL per event (CAT treaty), Generalized Pareto Distribution is often used for the calibration
of CAT risks. However, it’s interesting to test the quality of fits with other truncated "fat tail"
distributions. The past models: Strickler’s model and Erland Ekheden’s CAT model in life were based
on some strong assumption using public historical claim data in EMDAT. This report integrated also
the terrorism claim data in GTD database. In additional, it proposes to use the portfolio Sum At Risk
distribution data in the simulation of claim amounts and also to add the geographical concentration
scenarios in the list of scenarios.

The optimization of reinsurance plays also an important role in the reinsurance management. Depend-
ing on the need of insurer in terms of volatility or required capital, an optimal reinsurance program
can be defined to help insurer to obtain its objectives.

This thesis presented only a small part of life reinsurance activities. In particular, for internal reinsur-
ance activities, the third important role such as capturing diversification is not studied in this thesis.
Also, the modelling of proportional reinsurance is not mentioned. In general, with the implementa-
tion of solvency II with the requirement of better managing the risk and with the new age of data,
reinsurance will have no doubt big advantage in not only risk management but also insurance business.
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Appendix A

Example: calculation of Cost of capital
in Burning Cost pricing

We suppose that Reinsurer follows standard formula. Reinsurer firstly calculates its SCR Life UW
containing mainly SCR CAT and SCR mortality based on the sum at risk and the standard formula
shock. The total SCR attached to the reinsurance treaty is calculated by the SCR Life UW times a
transmission factor.

The calculation is performed in the following table:

In practice, the qx is calibrated depending on each reinsurer. The qx taken in this example is based
on the local entity view of the risk (based on qx Best Estimate).
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